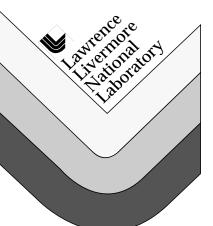
SPATIALLY CONTINUOUS MIXED P₂-P₁ SOLUTIONS FOR PLANAR GEOMETRY

Patrick S. Brantley

This paper was prepared for submittal to the ANS 2004 Winter Meeting November 14-18, 2004 Washington, D.C.

June 2004

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes

Spatially Continuous Mixed P2-P1 Solutions for Planar Geometry

Patrick S. Brantley

Lawrence Livermore National Laboratory P.O. Box 808, L-023 Livermore, CA 94551 brantley1@llnl.gov

INTRODUCTION

Even-order Legendre polynomial (P_N) expansion approximations of the neutron transport equation have historically seen only limited practical application. Research in the last decade [1] has resolved one of the historical theoretical objections [2] to the use of evenorder P_N approximations in planar geometry, namely the ambiguity in the prescription of boundary conditions as a result of an odd number of unknowns. This research also demonstrated the P₂ approximation to be more accurate than the P_1 approximation in planar geometry away from boundary layers and material interfaces. Neither the P₁ nor the P₂ approximation is convincingly more accurate near material interfaces. This progress motivated the reexamination of the multidimensional simplified P₂ (SP₂) approximation [3], the development of P_2 approximations for planar geometry stochastic transport problems [4], and the examination of the P₂ and SP₂ approximations as a synthetic acceleration technique for the discrete ordinates equations. [5]

The major remaining objection to even-order P_N approximations is that the scalar flux distributions obtained using these approximations can exhibit large spatial discontinuities at material interfaces and source discontinuities. In contrast, the odd-order P_N approximations typically utilized give spatially continuous scalar flux distributions at these locations. In this paper, we propose a mixed P_2 - P_1 angular approximation designed to take advantage of the improved accuracy of the P₂ approximation in the interior of material regions and near external boundaries while retaining the continuous solutions obtained by the P₁ approximation near material interfaces and source discontinuities. We present numerical results from a series of eigenvalue calculations to demonstrate the accuracy of the mixed P₂-P₁ angular approximation.

THE MIXED P2-P1 ANGULAR APPROXIMATION

The P₂ angular approximation to the planar geometry neutron transport equation in a spatial domain $0 \le x \le L$ can be written as [1]:

$$-\frac{d}{dx}\frac{1}{3\sigma_{a1}(x)}\frac{d}{dx}\hat{\phi}(x)+\hat{\sigma}_{a0}(x)\hat{\phi}(x)=\hat{Q}(x) \quad , \tag{1}$$

where

$$\hat{\sigma}_{a0}(x) = \frac{\sigma_{a0}(x)}{1 + \frac{4}{5}\rho(x)} \quad , \tag{2}$$

$$\hat{Q}(x) = \frac{Q(x)}{1 + \frac{4}{5}\rho(x)} \quad , \tag{3}$$

$$\hat{\phi}(x) = \left[1 + \frac{4}{5}\rho(x)\right]\phi_0(x) - \frac{4}{5}\rho(x)\frac{Q(x)}{\sigma_{a0}(x)} \quad , \tag{4}$$

and

$$\rho(x) = \frac{\sigma_{a0}(x)}{\sigma_{a2}(x)} \quad . \tag{5}$$

Here Q(x) is a neutron source, $\sigma_{an}(x) = \sigma_t(x) - \sigma_{sn}(x)$, n = 0, 1, 2, are the "absorption" cross sections obtained by subtracting the Legendre angular moments of the differential scattering cross section from the total cross section, and $\phi_0(x)$ is the neutron scalar flux. Eq. (1) is a standard diffusion equation (with a modified absorption cross section and source) for the modified scalar flux unknown $\hat{\phi}(x)$. The neutron scalar flux, $\phi_0(x)$, is readily obtained from the unknown $\hat{\phi}(x)$ using Eq. (4). Defining the parameter $\rho(x)$ by Eq. (5) gives the P₂ approximation and setting $\rho(x) = 0$ results in the standard P₁ approximation. Marshak vacuum boundary conditions for the P₂ approximation are given by [1]

$$\frac{1}{4} \left(\frac{1 + \frac{1}{2} \rho(x_b)}{1 + \frac{4}{5} \rho(x_b)} \right) \hat{\phi}(x_b) \mp \frac{1}{6\sigma_{a1}(x_b)} \frac{d}{dx} \hat{\phi}(x_b) = -\frac{3}{40} \frac{\rho(x_b)}{\sigma_{a0}(x_b)} \hat{Q}(x_b) , \begin{cases} x_b = 0 \\ x_b = L \end{cases}$$
(6)

In this paper, we propose to define the parameter $\rho(x)$ by the equation

$$\rho(x) = \frac{\sigma_{a0}(x)}{\sigma_{a2}(x)} \left[1 - \exp(-p\sigma_t(x)d_i(x)) \right] , \qquad (7)$$

where p is a user-specified parameter and $d_i(x)$ is the distance to the nearest material interface or source discontinuity at a given spatial point x. For p = 0, the pure P_1 approximation is recovered for all x; for $p \to \infty$, the pure P_2 approximation is obtained for all x. With this

representation for $\rho(x)$ and $1 \le p \ll \infty$ (e.g. $p \approx 5$), the P_1 approximation is used at material interfaces and source discontinuities and the angular approximation transitions smoothly to the P_2 approximation within approximately one mean free path from the material interface or source discontinuity. The numerical solution of the mixed P_2 - P_1 equations requires essentially the same computational expense as the solution of the standard P_1 equations.

NUMERICAL RESULTS

In this section, we compare the accuracy of the mixed P_2 - P_1 angular approximation to the pure P_1 and P_2 angular approximations for a series of two-region k-eigenvalue problems (numerical test problem IV.F of Ref. [1]). The test problem is a two-region, isotropically scattering critical slab 5.0 cm thick, with vacuum left and right boundaries and cross-section discontinuities at x=2.5 cm. The mathematical description of the transport problem is

$$\mu \frac{\partial}{\partial x} \psi(x, \mu) + \sigma_t \psi(x, \mu) = \frac{1}{2} \left[\sigma_s(x) + \frac{\nu \sigma_f(x)}{k} \right]_{-1}^1 \psi(x, \mu') d\mu' , \quad 0 < x < 5 ,$$
(8a)

$$\psi(0,\mu) = 0 \quad , \quad 0 < \mu \le 1 \quad , \tag{8b}$$

$$\psi(5, \mu) = 0$$
 , $-1 \le \mu < 0$. (8c)
The material properties are $\sigma_t = 1.0 \text{ cm}^{-1}$ across the two

regions of the slab, $\sigma_s(x) = \sigma_s^l = variable$ in the left region, $0 \le x < 2.5$ (see Table I), and $\sigma_s(x) = \sigma_s^r = 0.99$ cm⁻¹ in the right region, $2.5 < x \le 5$. The fission cross section $v\sigma_f(x)$ takes the values $v\sigma_f^l = 0$ in the left region and $v\sigma_f^r = v\sigma_f^{critical}$ in the right region of the slab. The critical values $v\sigma_f^{critical}$ for each value of σ_s^l are

given in Table I (taken from Ref. [1]) and give S_{16} discrete ordinates transport values of k = 1.

The percent relative errors in the computed k eigenvalue obtained using the pure P_1 and P_2 angular approximations to Eqs. (8) are shown in Table I. The

approximations to Eqs. (8) are shown in Table I. The accuracy of both approximations degrades as σ_s^l decreases, i.e. as the left region becomes less diffusive and the magnitude of the material property discontinuity increases. However, the eigenvalues obtained using the P_2 approximation are significantly more accurate than those obtained using the P_1 approximation for all values of σ_s^l . The scalar flux distributions surrounding the material discontinuity are shown in Fig. 1. The P_1 scalar flux is continuous at the material interface but is significantly in error both near the interface and away

from the interface. The P_2 scalar flux is discontinuous at the material interface but is more accurate than the P_1 solution away from the interface.

The transport problem was also solved using the mixed P_2 - P_1 approximation with three values of the parameter p of Eq. (7), p = 2.5, 5, and 10. The scalar flux distributions near the material interface obtained using the mixed P_2 - P_1 approximation are shown in Fig. 1. Larger values of p give scalar flux distributions with much of the character of the P_2 solution except they are spatially continuous at the material interface. Smaller values of p give more diffusive scalar flux solutions. The percent relative errors for the k eigenvalues obtained

using the mixed P_2 - P_1 approximation are shown in Table I. The mixed P_2 - P_1 approximation is more accurate than the P_1 approximation for all values of the parameter p and σ_s^l considered. For this test problem, smaller values of the parameter p give more accurate results for the k eigenvalue than larger values. With the exception of the $\sigma_s^l = 0.99$ case, the mixed P_2 - P_1 approximation is more accurate than both the P_1 and the P_2 approximations for all values of the parameter p.

CONCLUSIONS

In this paper, we showed that the P_2 approximation could be modified to give spatially continuous scalar flux solutions at material interfaces and source discontinuities. The proposed modification uses the P_1 angular approximation at material interfaces and source discontinuities and smoothly transitions to the P_2 approximation within approximately a mean free path from the interface. Neither the P_1 nor the P_2 approximation is convincingly more accurate near material interfaces, so the P_1 approximation can be utilized at these locations to give spatially continuous results. Numerical results from a series of k-eigenvalue test problems demonstrate that the mixed P_2 - P_1 approximation can yield improvements in accuracy over both the pure P_1 and P_2 approximations employed alone.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

REFERENCES

1. R. P. Rulko, E. W. Larsen, "Variational Derivation and Numerical Analysis of P₂ Theory in Planar Geometry," *Nucl. Sci. Engr.*, **114**, 271 (1993).

- 2. B. Davison, *Neutron Transport Theory*, Oxford University Press, London (1957).
- 3. D. I. Tomašević, E. W. Larsen, "The Simplified P₂ Approximation," *Nucl. Sci. Engr.*, **122**, 309 (1996).
- 4. B. Su, G. C. Pomraning, "P₁, P₂, and Asymptotic Approximations for Stochastic Transport," *Nucl. Sci. Engr.*, **120**, 75 (1995).
- 5. T. Noh, W. F. Miller, Jr., "The Effectiveness of P₂ and Simplified P₂ Synthetic Accelerations in the Solutions of Discrete Ordinates Transport Equations," *Nucl. Sci. Engr.*, **124**, 18 (1996).

TABLE I. Percent Relative Errors in the Criticality Eigenvalue $\,k\,$.

				mixed P ₂ -P ₁		
σ_s^l	$v\sigma_f^r = v\sigma_f^{critical}$	\mathbf{P}_1	P_2	p = 2.5	p = 5	p = 10
0.99	0.1408299	-8.54	+0.19	-1.66	-0.70	-0.23
0.90	0.1650953	-9.86	+1.58	-0.68	+0.50	+1.07
0.80	0.1803974	-11.13	+2.57	-0.20	+1.21	+1.90
0.70	0.1903208	-12.09	+3.29	+0.06	+1.65	+2.46
0.60	0.1974249	-12.84	+3.86	+0.21	+1.95	+2.87
0.50	0.2028380	-13.45	+4.34	+0.30	+2.16	+3.19
0.40	0.2071421	-13.96	+4.76	+0.35	+2.33	+3.44
0.30	0.2106719	-14.40	+5.12	+0.38	+2.46	+3.66
0.20	0.2136351	-14.79	+5.45	+0.39	+2.56	+3.84
0.15	0.2149489	-14.96	+5.60	+0.40	+2.61	+3.92

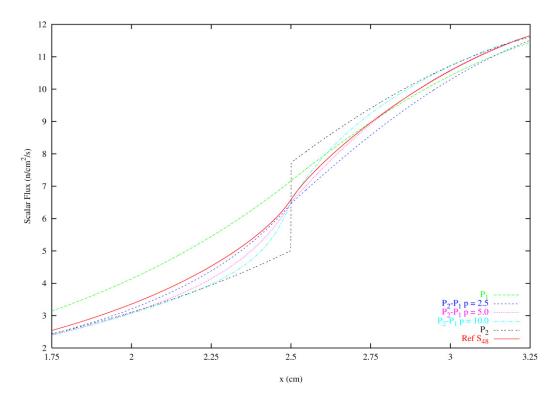


Fig. 1. Scalar flux near material property discontinuity for $\sigma_s^l = 0.6$ case.

Technical Information Department · Lawrence Livermore National Laboratory University of California · Livermore, California 94551